Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
System-prompting is a standard tool for customizing language-model chatbots, enabling them to follow a specific instruction. An implicit assumption in the use of system prompts is that they will be stable, so the chatbot will continue to generate text according to the stipulated instructions for the duration of a conversation. We propose a quantitative benchmark to test this assumption, evaluating instruction stability via self-chats between two instructed chatbots. Testing popular models like LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift within eight rounds of conversations. An empirical and theoretical analysis of this phenomenon suggests the transformer attention mechanism plays a role, due to attention decay over long exchanges. To combat attention decay and instruction drift, we propose a lightweight method called split-softmax, which compares favorably against two strong baselines.more » « less
-
Gaze-annotated facial data is crucial for training deep neural networks (DNNs) for gaze estimation. However, obtaining these data is labor-intensive and requires specialized equipment due to the challenge of accurately annotating the gaze direction of a subject. In this work, we present a generative framework to create annotated gaze data by leveraging the benefits of labeled and unlabeled data sources. We propose a Gaze-aware Compositional GAN that learns to generate annotated facial images from a limited labeled dataset. Then we transfer this model to an unlabeled data domain to take advantage of the diversity it provides. Experiments demonstrate our approach's effectiveness in generating within-domain image augmentations in the ETH-XGaze dataset and cross-domain augmentations in the CelebAMask-HQ dataset domain for gaze estimation DNN training. We also show additional applications of our work, which include facial image editing and gaze redirection.more » « less
-
Trust is an essential aspect of data visualization, as it plays a crucial role in the interpretation and decision-making processes of users. While research in social sciences outlines the multi-dimensional factors that can play a role in trust formation, most data visualization trust researchers employ a single-item scale to measure trust. We address this gap by proposing a comprehensive, multidimensional conceptualization and operationalization of trust in visualization. We do this by applying general theories of trust from social sciences, as well as synthesizing and extending earlier work and factors identified by studies in the visualization field. We apply a two-dimensional approach to trust in visualization, to distinguish between cognitive and affective elements, as well as between visualization and data-specific trust antecedents. We use our framework to design and run a large crowd-sourced study to quantify the role of visual complexity in establishing trust in science visualizations. Our study provides empirical evidence for several aspects of our proposed theoretical framework, most notably the impact of cognition, affective responses, and individual differences when establishing trust in visualizations.more » « less
-
There has been a growing interest in developing multimodal machine translation (MMT) systems that enhance neural machine translation (NMT) with visual knowledge. This problem setup involves using images as auxiliary information during training, and more recently, eliminating their use during inference. Towards this end, previous works face a challenge in training powerful MMT models from scratch due to the scarcity of annotated multilingual vision-language data, especially for low-resource languages. Simultaneously, there has been an influx of multilingual pretrained models for NMT and multimodal pre-trained models for vision-language tasks, primarily in English, which have shown exceptional generalisation ability. However, these are not directly applicable to MMT since they do not provide aligned multimodal multilingual features for generative tasks. To alleviate this issue, instead of designing complex modules for MMT, we propose CLIPTrans, which simply adapts the independently pre-trained multimodal M-CLIP and the multilingual mBART. In order to align their embedding spaces, mBART is conditioned on the M-CLIP features by a prefix sequence generated through a lightweight mapping network. We train this in a two-stage pipeline which warms up the model with image captioning before the actual translation task. Through experiments, we demonstrate the merits of this framework and consequently push forward the state-of-the-art across standard benchmarks by an average of +2.67 BLEU. The code can be found at www.github.com/devaansh100/CLIPTrans.more » « less
An official website of the United States government

Full Text Available